Tris(trimethylsilyl)methyl-lead Oxinates: * Their Solvolysis, Redistribution, and Reductive Elimination Reactions

Frank Glockling and N. M. Nanje Gowda Chemistry Department, The Queen's University, Belfast BT9 5AG

The complex $PbMe_2[C(SiMe_3)_3](ox)$ (where ox = the anion of 8-hydroxyquinoline) is stable to boiling ethanol over short periods, but on prolonged heating undergoes redistribution and reductive elimination reactions yielding $Pb(ox)_2$, $PbMe_3(ox)$, $PbMe_3[C(SiMe_3)_3]$, and 8-methoxyquinoline. By contrast, when $PbCl_2Me[C(SiMe_3)_3]$ is treated with 8-hydroxyquinoline at pH ca. 10 in methanol, ethanol, or aqueous dioxan the bis(trimethylsilyl)methyl complex $PbMe[CH(SiMe_3)_2](ox)_2$ (1) is formed together with $SiMe_3(OR)$ (R = H, Me, or Et) rather than the expected tris(trimethylsilyl)-methyl complex. Refluxing (1) in ethanol or aqueous dioxan results in further nucleophilic displacement of $SiMe_3$ groups yielding, successively, $PbMe(CH_2SiMe_3)(ox)_2$ (2) and $PbMe_2(ox)_2$ (3). These cleavage reactions occur in competition with disproportionation and reductive elimination processes, the final products derived from (3) being $Pb(ox)_2$, $PbMe_4$, $PbMe_3(ox)$, and 8-methoxyquinoline. The corresponding 8-hydroxy-2-methylquinolinate complexes are also examined.

Many tris(trimethylsilyl)methyl metal compounds have been studied; they are usually of high thermal stability and, for steric reasons, the (Me₃Si)₃C-M bond is usually resistant to electrophilic or nucleophilic attack.1-6 However, there are circumstances in which the tris(trimethylsilyl)methyl group undergoes unexpected reactions. For example, SiIPh₂[C-(SiMe₃)₃] reacts with NaOMe to give SiPh₂(OMe)[CH-(SiMe₃)₂], whilst thermolysis or photolysis of SiIPh₂[C-(SiMe₃)₃] yields among other products, C(SiMe₃)₂(SiMePh₂)-(SiMe₂I).8,9 Electrophilic reagents such as AgNO₃ also react with compounds of this type to form rearrangement products. 10 Even more striking is the reactivity of the C(SiMe₃)₃ group in octahedral complexes of tin such as SnMe[C(SiMe₃)₃](ox)₂ and $Sn(OEt)[C(SiMe_3)_3](ox)_2$ (ox = anion of 8-hydroxyquinoline) where one SiMe₃ group is cleaved by heating in ethanol, and no further reaction occurs even under forcing conditions (100 °C for 1 week). The mechanism proposed (Scheme 1) involves primary attack by EtO⁻ at the 2-position of the heterocyclic ring, with protonation at nitrogen, followed by the stereochemically favourable elimination of SiMe₃-(OEt),11 though the reaction might proceed via an Sn= C(SiMe₃)₂ intermediate. This type of reaction prompted us to examine the reactivity of the C(SiMe₃)₃ group in correspond-

ing organolead oxinates since differences might be expected because of the sizes and electronegativities of the two metals and because of probable differences in the metal-nitrogen bond strengths. In fact the differences, as described in this paper, were greater than anticipated.

Results and Discussion

A number of dimethylbis(substituted oxinato)lead complexes have previously been described; 12 they are evidently stable to water and alcohols and interact with co-ordinating solvents, whereas tin analogues do not. In this work we have converted $PbMe_2[C(SiMe_3)_3]X$ (X = Cl, Br, or O_2CCF_3) and $PbCl_2Me_3$ [C(SiMe₃)₃] into their complexes with 8-hydroxyquinoline and 8-hydroxyquinaldine (8-hydroxy-2-methylquinolinate, C₁₀H₈NO). The former, like the related tin compounds, yield complexes of type $PbMe_2[C(SiMe_3)_3](Y)$ (Y = chelate) as pale yellow solids, soluble in most common organic solvents. On prolonged heating in methanol or ethanol PbMe2-[C(SiMe₃)₃](ox) decomposes by redistribution and reductive elimination processes [equations (v) and (vi) discussed later] since the observed products are PbMe₃[C(SiMe₃)₃], PbMe₃-(ox), and Pb(ox)2. Typically some 40% reaction occurs after 7 d at 70 °C. The reaction of 8-hydroxyquinaldine with PbCl₂-Me[C(SiMe₃)₃] was not studied in detail: in ethanol solution the lead(II) complex Pb(C₁₀H₈NO)₂ was rapidly formed.

8-Hydroxyquinoline and PbCl₂Me[C(SiMe₃)₃] react in aqueous ammoniacal-methanol, -ethanol, or -dioxan to yield a yellow complex soluble in common organic solvents. Elemental analysis and mass and n.m.r. spectroscopy established that this complex is PbMe[CH(SiMe₃)₂](ox)₂ rather than the expected product, PbMe[C(SiMe₃)₃](ox)₂. Hence loss of one SiMe₃ group occurs too rapidly for isolation of the initially formed complex [reaction (i); R = H, Me, or Et]. In contrast

PbMe[
$$C(SiMe_3)_3$$
](ox)₂ + ROH \longrightarrow
PbMe[$CH(SiMe_3)_2$](ox)₂ + SiMe₃(OR) (i)
(1)

to the tin analogue when, (1) is heated for a limited period in methanol, ethanol, or aqueous dioxan cleavage of a further SiMe₃ group occurs [equation (ii)]. This reaction also proceeds

(1) + ROH
$$\longrightarrow$$
 PbMe(CH₂SiMe₃)(ox)₂ + SiMe₃(OR) (ii) (2)

^{*}Oxinate - 8-hydroxyquinolinate.

slowly at room temperature in MeOH- C_6D_6 (10% over 3 d). When (2) is refluxed for several days in the same solvents nucleophilic cleavage of the remaining SiMe₃ group occurs [equation (iii)]. The overall reaction is considerably more

(2) + ROH
$$\longrightarrow$$
 PbMe₂(ox)₂ + SiMe₃(OR) (iii)
(3)

complex than is indicated by reactions (i)—(iii) since, at each stage, a yellow insoluble solid is formed which has been identified as $Pb(ox)_2$ contaminated with $PbMe_2(ox)_2$, and it therefore appears that nucleophilic displacement of $SiMe_3$ groups is in competition with redistribution and reductive elimination processes. These reactions are summarised in equations (iv)—(vi), where $R' = C(SiMe_3)_3$, $CH(SiMe_3)_2$,

$$2 \text{ PbMeR'}(ox)_2 \longrightarrow \text{PbMe}_2 \text{R'}(ox) + \text{PbR'}(ox)_3$$
 (iv)

$$2 \text{ PbMe}_2 R'(ox) \longrightarrow \text{PbMe}_3 R' + \text{PbMe}_3 R'(ox)_2$$
 (v)

$$PbR'(ox)_3 \longrightarrow Pb(ox)_2 + \bigvee_{R'O} N$$
 (vi)

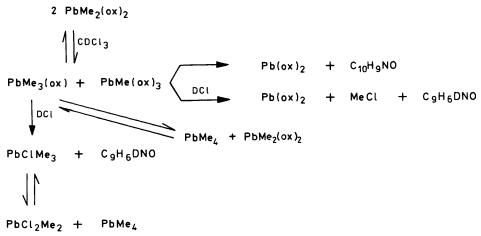
CH₂SiMe₃, or Me. It is possible that in the initial reaction between PbCl₂Me[C(SiMe₃)₃] and 2 mol of 8-hydroxy-quinoline nucleophilic cleavage of an SiMe₃ group occurs from an intermediate chlorolead oxinate [equation (vii)].

PbClMe[C(SiMe₃)₃](ox)
$$\xrightarrow{\text{EtOH}}$$
PbClMe[CH(SiMe₃)₂](ox) $\xrightarrow{\text{Hox}}$ (1) (vii)

Although we have separately established that PbMe[C-(SiMe₃)₃](O₂CMe)₂ undergoes quantitative reductive elimination of CMe(SiMe₃)₃ at room temperature in benzene, the parallel reaction is not observed for the oxinate complexes. Additional complications to the overall reaction scheme are implied by the identification of free 8-hydroxyquinoline (or C₉H₆DNO from reactions examined in CD₃OD). This is due to equilibria between oxinato- and alkoxy-lead complexes.

Most of our evidence for reactions (iv)—(vi) comes from separate experiments on preformed PbMe₂(ox)₂ (3). This complex, previously reported as stable in solution, ¹² in fact slowly undergoes reactions (iv)—(vi) in C_6D_6 solution since the products unambiguously identified are: Pb(ox)₂, PbMe₃(ox), PbMe₄, and 8-methoxyquinoline. In C_6D_6 -MeOH mixtures

these reactions are much slower and since no ethane is formed we suggest that the reaction (vi) is the dominant reductive process.


The decomposition of (3) in CDCl₃ at 70 °C was also examined: the products are consistent with attack by a limited amount of DCl (from the thermal decomposition of CDCl₃) on the primary redistribution complexes as indicated by the oversimplified Scheme 2. Reaction (v) proceeds rapidly since attempts to prepare PbMe₃(ox) by reaction of PbClMe₃ with 8-hydroxyquinoline in EtOH-NH₃(aq) gave either pure (3) or a mixture of (3) with PbMe₃(ox).

When reactions (ii) or (iii) were carried out in CD_3OD the volatile products identified were $SiMe_3(OCD_3)$, $SiMe_3(OD)$, and $O(SiMe_3)_2$ and these experiments gave no evidence for $CHMe(SiMe_3)_2$, $SiMe_3Et$, or C_2H_6 suggesting that the reductive elimination reactions [equation (vi)] are slow. Similar experiments in C_6D_6 -MeOH led to the identification of the ion [PbMe₂(CH₂SiMe₃)]⁺ in the mass spectrum of the volatile components, derived from PbMe₃(CH₂SiMe₃). This implies that reactions (iv) and (v) also occur when $R' = CH_2SiMe_3$. Evidence for the alkoxyquinoline [equation (vi)] with $R' = CH_2SiMe_3$ was not obtained: ¹H and ¹³C spectra in the SiMe₄ region were always complex and even the volatile components contained five ¹H resonances due to trimethylsilyl-containing compounds.

The probable change from five- to six-co-ordination in these oxinato-complexes results in two additional bands in the u.v.-visible spectra, near 260 and 380 nm. This change in co-ordination number also greatly increases the lead-proton ${}^{2}J(PbCH_{3})$ and lead-carbon ${}^{1}J(PbCH_{3})$ couplings (Tables 1 and 2). For complex (2) the SiMe₃ proton resonance is to high field of values observed in four-co-ordinate lead compounds such as $PbMe_{3}(CH_{2}SiMe_{3})$. ¹³

Experimental

PbMe₂[C(SiMe₃)₃](ox) (4).—8-Hydroxyquinoline (0.4 g) and PbMe₂[C(SiMe₃)₃](O₂CCF₃) (1.0 g) in ethanol (15 cm³) and ether (15 cm³) were stirred at room temperature for 18 h when the ether was distilled from the yellow solution. Addition of NaO₂CMe (0.1 g) in aqueous ammonia (5 cm³) precipitated the *complex* as a pale yellow solid which was washed with ethanol-ammonia (aq) (10:3). Yield 0.8 g (75%), m.p. 138—141 °C (Found: C, 41.9; H, 6.2; N, 2.1. C₂₁H₃₉NOPbSi₃ requires C, 41.1; H, 6.4; N, 2.3%). The same procedure, starting from other esters of PbClMe₂[C(SiMe₃)₃], also gave the complex. U.v.-visible bands at [nm (log ε), in EtOH] 203 (4.64),

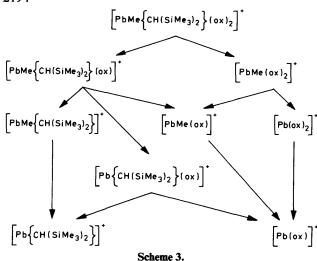
Scheme 2.

Table 1	Proton n m r	data (n n m	J in Hz) at 35 °C	
Table 1.	FIOLON H.III.I.	uata (D.D.III	J III IIZI at 33 C	

Complex	Solvent	$\delta(SiMe_3)$	$\delta(PbMe)$	δ(PbCH)	$\delta(2\text{-Me})$	² J(PbMe)	² J(PbCH)
(1) PbMe[CH(SiMe ₃) ₂](ox) ₂	CDCl ₃	0.00	1.91	1.40		137	133
	C_6D_6	0.18	1.71	1.55		137	
	CD_3OD	0.00	2.00	1.44		135	135
(2) PbMe(CH ₂ SiMe ₃)(ox) ₂	CDCl ₃	-0.19	1.92	1.82		142	178
	C_6D_6	-0.16	2.06	1.86		165	152
	CD_3OD	-0.37	1.95	1.79		160	174
(3) PbMe2(ox)2	$CDCl_3$		2.03			151	
	C_6D_6 (70 °C)		1.87			157	
	CD_3OD		1.95			160	
(4) $PbMe_2[C(SiMe_3)_3](ox)$	CDCl ₃	0.31	1.47			63	
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	C_6D_6	0.40	1.40			64	
(5) $PbMe_2[C(SiMe_3)_3](C_{10}H_8NO)$	CDCl ₃	0.31	1.52		2.69	64	
20 20 20 20 20 20 20 20 20 20 20 20 20 2	C_6D_6	0.40	1.50		2.32	65	

Table 2. Carbon-13 n.m.r. data (p.p.m., J in Hz) at 35 °C

Complex	Solvent	$\delta(SiMe_3)$)	δ(PbMe)	δ(PbC	CN)	$\delta[C(SiMe_3)_3]$	¹J(Pb	Me)	¹J(PbCH)
(1)	CDCl ₃	2.50		38.80	46.	80		81	3	290
(1)	C_6D_6	2.70		38.40	47.	20		81	2	305
(1)	$C_6D_6-CD_3OD (3:1)$	2.70		39.40	47.	50		79	6	258
(1)	C_6D_6 -CH ₃ OH (1:3)	2.80		39.50	48.	20		78	3	244
(2)	CDCl ₃	0.80		36.40	40.	30		85	0	577
(2)	C_6D_6	0.85		38.40	40.	40				
(2)	$C_6D_6-CD_3OD (3:1)$	0.60		37.20	40.	40				
(2)	C_6D_6 -CH ₃ OH (1:3)	0.65		37.00	40.	90		87	8	600
(3)	CDCl ₃			35.60				92	5	
(4)	CDCl ₃	5.29		26.43			29.60	28	3	
(5)	CDCl ₃	5.29		25.95			29.13	28	1	
				(24.54, 2-1	Me)					
		Aromatic resonances								
		C(2)	C(3)	C(4)	C(5)	C(6)	C(7)	C(8)	C(9)	C(10)
(1)	CDCl ₃	145.5	120.4	138.5	115.7	130.2	2 110.6	163.1	140.9	131.4
(2)	CDCl ₃	145.2	120.7	138.5	115.7	130.4		163.0	141.0	131.5
(3)	CDCl ₃	145.6	120.8	138.5	115.4	130.1		162.4	140.8	131.4
(4)	CDCl ₃	144.6	120.4	136.2	115.8	128.4		160.1	142.0	130.0
(5)	CDCl	153.3	121.3	136.5	116.7	127.1		159.6	141.5	128.2
	uinoline CDCl ₃	149.2	121.6	135.8	119.6	126.7		155.5	140.3	129.4

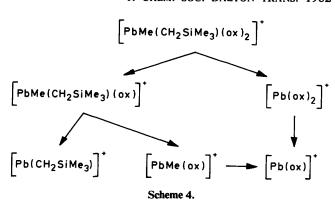

241 (4.76), 312 (3.49), 360 (sh) (2.97). I.r. bands in the v(Pb-C) region at 444vw, 468w, 502m cm⁻¹. Lead-containing ions in its mass spectrum at m/e 598m (P — Me)⁺, 581m, 569m, 533m, 496m, 489m, 469s, 459m, 439s, 431vw metastable, 409vw metastable, 382s, 367w, 352vs, 297vw, 252w, 238w, 223m.

PbMe₂[C(SiMe₃)₃](C₁₀H₈NO) (5).—The compound PbMe₂-[C(SiMe₃)₃](O₂CCF₃) (1.0 g) and 8-hydroxyquinaldine (0.3 g) gave the yellow *complex*. Yield 0.8 g (80%), m.p. 153—155 °C (Found: C, 41.9; H, 6.7; N, 2.2. $C_{22}H_{41}NOPbSi_3$ requires C, 42.1; H, 6.6; N, 2.2%). U.v.-visible bands at [nm (log ε), in EtOH] 204 (4.70), 244 (4.78), 300 (3.56), 340 (sh) (3.15). I.r. bands in v(Pb-C) region at 446m, 472m cm⁻¹. Its mass spectrum showed a strong parent ion at m/e 627 and the following lead-containing ions: 612s, 597w, 582s, 553vw metastable, 489m, 469vs, 459w, 439vs, 411w metastable, 396vs, 381m, 366vs, 351w, 338vw metastable, 253s, 238s, 223vs.

PbMe[CH(SiMe₃)₂](ox)₂ (1).—8-Hydroxyquinoline (3.5 g) was added to a freshly prepared sample ³ of PbCl₂Me[C-

(SiMe₃)₃] (3.3 g) suspended in ethanol (100 cm³), followed by aqueous ammonia (30 cm³). After stirring overnight the complex was separated as a yellow solid, washed with ethanolammonia and crystallised from benzene. Yield, 3.6 g, m.p. 140-143 °C (softening range) (Found: C, 46.4; H, 5.2; N, 4.1. $C_{26}H_{34}N_2O_2PbSi_2$ requires C, 46.6; H, 5.1; N, 4.2%). The same complex resulted when the reaction was carried out in aqueous ammonia-dioxane solution. It separated initially as an orange-red oil which solidified on standing. U.v.visible bands at [nm (log ε), in EtOH] 202 (4.95), 242 (4.73), 260 (4.62), 336 (3.62), 382 (3.71). I.r. bands in v(Pb-C) region at 472s, 485s, 499vs cm⁻¹. Its mass spectrum contained a weak parent ion at m/e 670 together with lead-containing ions at 654w, 598w, 576w, 541m, 526vs, 511s, 496s, 469w, 464w, 454w, 439w, 397vs, 382vs, 367vs, 352vs, 338vw metastable, 325s, 295s, 288m, 274s, 253vs, 238m, 223vs. The ions identified at high resolution are shown in Scheme 3.

Reaction of PbMe₂[C(SiMe₃)₃](ox) with MeOH.—The complex in C_6D_6 -MeOH showed ¹H resonances at 0.35 and 1.39 p.p.m. [2J (PbH) 64 Hz] due to the complex and at 0.18 and



1.19 p.p.m. due to PbMe₂[C(SiMe₃)₃](OMe). After 6 d at 70 °C new signals were observed at 0.08 [SiMe₃(OMe)], 0.19 and 0.92 p.p.m {PbMe₃[C(SiMe₃)₃]} together with unassigned signals at 0.05 and 0.82 p.p.m. [²J(PbH) 57 Hz]. Volatile components were SiMe₃(OMe) and an unidentified compound with a longer gas-liquid chromatography (g.l.c.) retention time than CMe-(SiMe₃)₃. The involatile components showed ¹H resonances due to PbMe₃[C(SiMe₃)₃], PbMe₂(ox)₂, and 8-methoxyquino-line together with unassigned signals at 0.12 and 0.83 p.p.m. The insoluble yellow solid was a mixture of Pb(ox)₂ and PbMe₃(ox) (Found: C, 40.5; H, 4.2; N, 5.1%).

Reaction of PbMe₂[C(SiMe₃)₃](C₁₀H₈NO) with MeOH.— The complex in C₆D₆-MeOH showed ¹H resonances at 0.37, 1.45 (*J* 66 Hz), and 2.38 p.p.m. due to the complex and at 0.18, 1.16 p.p.m. (53 Hz), due to PbMe₂[C(SiMe₃)₃](OMe). After 4 d at 70 °C new signals appeared due to SiMe₃(OMe) and PbMe₃[C(SiMe₃)₃] together with unassigned signals at 0.04, 0.07, and 0.82 p.p.m. (*J* 56 Hz). The volatile components contained SiMe₃(OMe) and the same unidentified g.l.c. peak as in the preceding experiment. The insoluble yellow residue corresponded to Pb(C₁₀H₈NO)₂ (Found: C, 45.2; H, 3.1; N, 5.0. C₂₀H₁₆N₂O₂Pb requires C, 45.9; H, 3.1; N, 5.4%).

PbMe(CH₂SiMe₃)(ox)₂ (2).—An ethanolic solution (50 cm³) of PbMe[CH(SiMe₃)₂](ox)₂(1) (1.0 g) was refluxed for 4 d. On cooling a small quantity of Pb(ox)2 separated. Concentration of the solution gave the complex as a brown solid (0.8 g) which softened at 95 °C (Found: C, 46.1; H, 4.2; N, 4.5. C₂₃H₂₆-N₂O₂PbSi requires C, 46.2; H, 4.4; N, 4.7%). However, n.m.r. spectra of the sample showed traces of PbMe2(ox)2 and 8methoxyquinoline. The same complex was formed when PbMe[CH(SiMe₃)₂](ox)₂ was refluxed in aqueous dioxan, but in pure dioxan no reaction occurred. U.v.-visible bands at [nm (log ϵ), in EtOH] 202 (4.88), 242 (4.71), 260 (4.69), 320 (3.60), 336 (3.67), 380 (3.80). I.r. bands in the v(Pb-C) region region at 481m, 498m cm⁻¹. The highest mass ion in its mass spectrum at m/e 469m is due to $[PbMe_2(CH_2SiMe_3)(ox)]^+$. Other lead-containing ions at m/e 454w, 439w, 397vs, 382w, 367vs, 352s, 325vs, 295vs, 253s, 238m, 223s. The fragment ions in Scheme 4 were identified at high resolution.

This reaction was examined in a ¹³C n.m.r. tube in C₆D₆-MeOH (5:1). After 1 d at 70 °C new resonances were present due to PbMe(CH₂SiMe₃)(ox)₂ in addition to those from the starting material (confirmed by an off-resonance spectrum), and a small quantity of yellow solid was present. After prolonged heating (54 d at 70 °C) a considerable amount of yellow solid separated and six new ¹³C signals appeared at the

expense of all others [-1.16, 1.25, 1.83, 3.26 p.p.m. due to SiMe₃ groups, at 34.98 p.p.m. due to PbMe₂(ox)₂, and at 55.52 p.p.m. due to the methyl resonance of 8-methoxyquinoline]. The latter was confirmed by comparison with the spectrum of an authentic sample. In the aromatic 13 C region resonances due to complexed ox were all separated from those due to 8-methoxyquinoline (Table 2).

Separation of the *volatiles* by warming *in vacuo* gave two liquid layers with ¹H resonances due to SiMe₃ groups at -0.36, 0.04, 0.05, 0.10, 0.15 p.p.m. together with PbMe₄ [0.72 p.p.m., ²J(HPb) 60 Hz], SiMe₃(OMe) (0.10, 3.24 p.p.m.), and a small unidentified PbMe resonance [0.77 p.p.m., ²J(HPb) 58 Hz]. The mass spectrum of the volatiles contained strong peaks due to ions derived from O(SiMe₃)₂ (m/e 147) and SiMe₃(OMe) (89) by Me* loss, together with low intensity lead-containing ions derived from PbMe₃(ox) (253) and PbMe₂(CH₂SiMe₃)(ox) (325, 295).

The *involatiles*, after washing with ethanol, analysed for a mixture of PbMe₂(ox)₂ and Pb(ox)₂ (Found: C, 45.2; H, 2.8; N, 5.0%). Washing this mixture with CHCl₃ left Pb(ox)₂ as an insoluble yellow solid (Found: C, 43.8; H, 2.5; N, 5.4. $C_{18}H_{12}N_2O_2Pb$ requires C, 43.6; H, 2.4; N, 5.7%). A CDCl₃ extract of the involatile material showed ¹H resonances due to O(SiMe₃)₂ (0.06), 8-methoxyquinoline (4.08), and PbMe₂(ox)₂ [2.07 p.p.m., ²J(HPb) 149 Hz]. Lead-containing ions in the mass spectrum of this mixture gave good evidence for PbMe₂-(ox)₂ (m/e 510, 496), PbMe₃(ox) (397, 253), and PbMe₂(CH₂-SiMe₃)(ox) (469, 439, 325, 295). 8-Methoxyquinoline gave a strong parent ion at 159.

PbMe₂(ox)₂ (3).—This complex was prepared from PbCl₂-Me₂ and 8-hydroxyquinoline.¹² U.v.-visible bands were at [nm (log ε), in EtOH] 202 (4.80), 242 (4.71), 258 (4.64), 320 (3.53), 336 (3.62), 378 (3.75); i.r. bands in the v(Pb-C) region at 481m and 498m cm⁻¹. Lead-containing ions in the mass spectrum were present at m/e 524vw, 510vw, 496m (P – 2Me)⁺, 396w, 382s, 366m, 352vs, 253vs, 238m, 223vs.

Decomposition of PbMe₂(ox)₂.—(a) In C₆D₆. The solution at 70 °C showed a ¹H resonance at 1.87 p.p.m. [²J(HPb) 157 Hz]. After heating for 11 d at 70 °C three new Pb-Me signals were observed with satellites together with a signal at 3.61 p.p.m. due to the methyl resonance of 8-methoxyquinoline (confirmed by comparison with an authentic specimen). The PbMe signals were assigned as follows [δ p.p.m., ²J(HPb) in Hz]: PbMe₄ (0.72, 61); PbMe₃(ox) (1.08, 66); PbMe(ox)₃ (2.12, 252); the last two assignments are somewhat tentative. Further heating (34 d, 70 °C) increased the intensity of the signals at 0.72 and 3.61 p.p.m.

(b) In C₆D₆-MeOH (4: 1). The ¹H n.m.r. spectrum was unchanged over 10 d at 70 °C, but after 35 d PbMe₄ was detected (0.72 p.p.m.) and its intensity increased over 66 d. Other sig-

nals were obscured by the MeOH resonance. A small amount of pale yellow solid, impure Pb(ox)2, was separated.

(c) In CDCl₃. The complex $[\delta(Me) 2.27 \text{ p.p.m.}, {}^2J(\text{HPb}) 156 \text{ Hz}]$ was heated at 70 °C for 3 d when four new signals were present, two of which showed Pb satellites. After 7 d at 70 °C all of the starting material had reacted. Assignments, based on comparison with authentic materials, are as follows $[\delta \text{ p.p.m.}, {}^2J(\text{HPb}) \text{ in Hz}]$: PbMe₄ (0.73, 61); PbClMe₃ (1.59, 68); MeCl (3.01 p.p.m.); 8-methoxyquinoline (Me, 4.11 p.p.m.). An intense ion at m/e 146 in the mass spectrum was due to C₉H₆DNO. After 38 d at 70 °C the signal due to PbClMe₃ had disappeared and a reddish brown sticky solid was present. A separate experiment showed that when PbClMe₃ is heated in CDCl₃ at 70 °C for 24 d PbMe₄ is formed together with a white solid, PbCl₂Me₂. After 55 d at 70 °C methyl chloride was also present in the mixture.

Reaction between PbClMe₃ and 8-Hydroxyquinoline.—(a) Stirring PbClMe₃ (1.5 g) and 8-hydroxyquinoline (2.0 g) in MeOH-NH₃(aq) (1:1, 40 cm³) gave some yellow crystals. Addition of aqueous ammonia to the filtrate produced a further crop of yellow crystals analysing as a mixture of PbMe₂(ox)₂ and PbMe₃(ox) (Found: C, 44.0; H, 3.7; N, 4.8. PbMe₃(ox) requires C, 36.4; H, 3.8; N, 3.5%). Its mass spectrum contained ions derived from PbMe₂(ox)₂ [m/e 510w, 496s] and from PbMe₃(ox) (397w) together with lower mass ions at 382s, 367m, 352vs, 253vs, 238s, and 223s. Its ¹H n.m.r. spectrum in CDCl₃ corresponded to PbMe₂(ox)₂ (Table 1). (b) Addition of aqueous ammonia (15 cm³) to a yellow ethanolic solution of PbClMe₃ (1.4 g) and 8-hydroxyquinoline (0.8 g)

followed by stirring gave pure PbMe₂(ox)₂ as yellow crystals (Found: C, 45.2; H, 3.6; N, 4.8. C₂₀H₁₈N₂O₂Pb requires C, 45.7; H, 3.5; N, 5.3%).

References

- 1 F. Glockling, P. Harriott, and W. K. Ng, J. Chem. Res., 1979, (S) 12, (M) 275.
- 2 F. Glockling and W. K. Ng, J. Chem. Res., 1980, (S) 230, (M), 3128.
- 3 F. Glockling and N. M. Nanje Gowda, *Inorg. Chim. Acta*, 1982, 58, 149.
- 4 F. Glockling, N. S. Hosmane, T. J. King, V. B. Mahale, L. Magos, and J. J. Swindall, J. Chem. Res., 1977, (S) 116, (M) 1201.
- 5 C. Eaborn, N. Retta, and J. D. Smith, J. Organomet. Chem. 1980, 190, 101.
- 6 C. Eaborn and N. P. Y. Siew, J. Organomet. Chem., 1980, 202, 157.
- C. Eaborn, D. A. R. Happer, K. D. Safa, and D. R. M. Walton, J. Organomet. Chem., 1978, 157, C50.
- 8 C. Eaborn and K. D. Safa, J. Organomet. Chem., 1980, 204, 169.
- 9 W. Binder, C. Eaborn, A. Ritter, and K. D. Safa, J. Chem. Soc., Chem. Commun., 1981, 175.
- 10 C. Eaborn, D. A. R. Happer, S. P. Happer, and K. D. Safa, J. Organomet. Chem., 1980, 188, 179.
- 11 F. Glockling and W. K. Ng, J. Chem. Soc., Dalton Trans., 1981,
- 12 M. Aritomi and Y. Kawasaki, J. Organomet. Chem., 1974, 81, 363
- 13 K. C. Williams, J. Organomet. Chem., 1970, 22, 141.

Received 14th January 1982; Paper 2/072